The $C^*$-algebras of codimension one foliations without holonomy.
نویسندگان
چکیده
منابع مشابه
Lie Algebras of Vector Fields and Codimension One Foliations
LIE ALGEBRAS OF VECTOR FIELDS AND CODIMENSION ONE FOLIATIONS
متن کاملCodimension One Symplectic Foliations
We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.
متن کاملElimination of Resonances in Codimension One Foliations
The problem of reduction of singularities for germs of codimension one foliations in dimension three has been solved by Cano in [3]. The author divides the proof in two steps. The first one consists in getting pre-simple points and the second one is the passage from pre-simple to simple points. In arbitrary dimension of the ambient space the problem is open. In this paper we solve the second st...
متن کاملAPPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملAffine Holonomy Foliations
We establish a geometric condition that determines when a type III von Neumann algebra arises from a foliation whose holonomy becomes affine with respect to a suitable transverse coordinate system. Under such an assumption the Godbillon-Vey class of the foliation becomes trivial in contrast to the case considered in Connes’s famous theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1985
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12090